\qquad
\qquad

4 Chapter 4 Test, Form 2A

\qquad

Write the letter for the correct answer in the blank at the right of each question.

1. What is the length of the sides of this equilateral triangle?
A 42
C 15
B 30
D 12

2. C
3. How would $\triangle A B C$ with vertices $A(4,1), B(2,-1)$, and $C(-2,-1)$ be classified based on the length of its sides?
F equilateral
G isosceles
H scalene
J right
4. H

Use the figure for Questions 3 and 4.

3. What is $m \angle 1$?
A 40
B 50
C 70
D 90
3. A
4. What is $m \angle 3$?

F 40
G 70
H 90
J 110
4. J
5. If $\triangle D J L \cong \triangle E G S$, which segment in $\triangle E G S$ corresponds to $\overline{D L}$?
A $\overline{E G}$
B $\overline{E S}$
C $\overline{G S}$
D $\overline{G E}$
5. B
6. Which triangles are congruent in the figure?

F $\triangle K L J \cong \triangle M N L$
G $\triangle J L K \cong \triangle N L M$

H $\triangle J K L \cong \triangle L M N$
J $\triangle J K L \cong \triangle M N L$
6. J
7. Quadrilateral $M N Q P$ is made of two congruent triangles.
$\overline{N P}$ bisects $\angle N$ and $\angle P$. In the quadrilateral, $m \angle N=50$ and $m \angle P=100$. What is the measure of $\angle M$?
A 25
C 60
B 50
D 105

7. \quad D
8. The coordinates of the vertices of $\triangle C D E$ are $C(-3,1), D(-1,4)$, and $E(-6,4)$.

A transformation applied to $\triangle C D E$ creates a congruent triangle $\triangle S Q R$. The new coordinates of two vertices are $Q(-1,6)$ and $R(-6,6)$. What are the coordinates of S ?
F $(-3,3)$
G $(1,3)$
H $(-1,1)$
J $(-1,3)$
8. F
\qquad
\qquad
\qquad

4 Chapter 4 Test, Form 2A (continued)

9. If $\triangle A B C$ is isosceles with vertex angle $\angle \mathrm{B}$, and $\overline{A E} \cong \overline{F C}$, which theorem or postulate can be used to prove $\triangle A E B \cong \triangle C F B$?
A SSS
C ASA
B SAS
D AAS

10. B

Use the proof for Questions 10 and 11.

Given: $\frac{\overline{D A}}{\overline{D A} \cong \overline{Y N}}$
Prove: $\angle N D Y \cong \angle D N A$

Proof:

Statements	Reasons	
1. $\overline{D A} \\| \overline{Y N}$	1. Given	
2. $\angle A D N \cong \angle Y N D$	2. Alt. int. \llcorner s are \cong.	
3. $\overline{D A} \cong \overline{Y N}$	3. Given	
4. $\overline{D N} \cong \overline{D N}$	4. Reflexive Property	
5. $\triangle N D Y \cong \triangle D N A$	5. (Question 10)	
6. $\angle N D Y \cong \angle D N A$	6. $\underline{(\text { Question } 11)}$	

10. What is the reason for statement 5 ?
F ASA
H SAS
G AAS
J SSS
11. H
12. What is the reason for statement 6 ?
A Alt. int. $\&$ are \cong.
C Corr. angles are \cong.
B CPCTC
D Isosceles Triangle Theorem
13. B
14. What is the classification of a triangle with vertices $A(3,3), B(6,-2), C(0,-2)$ by the length of its sides?
\mathbf{F} isosceles
H equilateral
G scalene
J right
15. F
16. What are the missing coordinates of the triangle?
A $(-2 b, 0)$
C $(-c, 0)$
B $(0,2 b)$
D $(0,-c)$

Bonus Name the coordinates of points A and C in isosceles right $\triangle A B C$ if point C is in the second quadrant.

B: $A(0,0), C(-a, 0)$

